BSIT - Data Analytics (FinMark Corporation)

Get Started. It's Free
or sign up with your email address
BSIT - Data Analytics (FinMark Corporation) by Mind Map: BSIT - Data Analytics (FinMark Corporation)

1. Math for Machine Learning

1.1. **Course Project:** Machine Learning Model for Data Overload and Insights

1.1.1. **Milestone 1:** Exploratory Data Analysis (EDA)

1.1.1.1. Pandas: Data Preprocessing

1.1.1.2. Pandas: Descriptive Statistics

1.1.2. **Milestone** **2:** Data Visualization of EDA

1.1.2.1. Matplotlib/Seaborn: Data Visualization Techniques

1.1.3. **Terminal Assessment:** Machine Learning Model Presentation

2. Machine Learning and Predictive Analytics

2.1. **Course Project:** Predictive Analytics and Sales Forecasting

2.1.1. **Milestone 1: ** Project Predictive Model:

2.1.1.1. Pandas/NumPy: Data Preprocessing

2.1.1.2. Pandas/NumPy: Descriptive Statistics

2.1.1.3. Integration of Machine Learning MAlgorithms (Multiple Linear Regression)

2.1.2. **Milestone 2: ** Project Forecasting Model with Visualizations:

2.1.2.1. Time Series Analysis

2.1.2.2. Forecasting Techniques

2.1.2.3. Maplotib/Seaborn: Visualizing Time Series Data and Forecasting Results

2.1.3. **Terminal Assessment: ** Project Presentation:

3. Data Mining Principles

3.1. **Course Project:** Customer Segmentation for Personalized Financial Products

3.1.1. **Milestone 1: ** Project Data Preparation and Exploratory Analysis Report

3.1.2. **Milestone 2: ** Clustering Implementation and Initial Segmentation Report

3.1.3. **Terminal Assessment:** Final Report and Product Recommendations

4. Statistical Analysis

4.1. **Course Project:** Sales

4.1.1. **Milestone 1:** Descriptive Statistics

4.1.1.1. Anomaly Detection

4.1.2. **Milestone 2:** Inferrential Statistics

4.1.2.1. Data Validation

4.1.2.2. Trend and Pattern Identification

4.1.3. **Terminal Assessment: ** Complication of Report

4.2. Financial Analysis

4.3. Mini-Thesis/Business(Statistical Report

4.4. Tool/s: Python

4.4.1. Data Manipulation

4.4.1.1. Pandas

4.4.2. Calculations

4.4.2.1. NumPy

4.4.2.2. SciPy

4.4.3. Visualizations

4.4.3.1. Matplotlib

4.4.3.2. Seaborn

4.5. Tool: JASP

4.6. Topic Outline

4.6.1. Descriptive Statistics

4.6.1.1. Central Tendency

4.6.1.2. Variability/Standard Deviation

4.6.1.3. Skewness

4.6.1.4. Relative Position

4.6.2. Inferential Statistics

4.6.2.1. z-test*

4.6.2.2. t-test

4.6.2.3. ANOVA

4.6.2.4. chi-square*

4.6.2.5. correlational analysis

4.6.2.6. regression analysis