Deep Learning

Get Started. It's Free
or sign up with your email address
Deep Learning by Mind Map: Deep Learning

1. Unsupervised

1.1. Restricted Boltzmann Machines

1.1.1. A fast learning algorithm for deep belief nets

1.2. Discriminative RBMS

1.2.1. Classification using Discriminative Restricted Boltzmann Machines

1.3. Conditional RBMS

1.3.1. Modeling Human Motion Using Binary Latent Variables

1.4. Hybrid RBMS

1.5. Autoencoders

1.5.1. Cat paper

1.6. Semi-supervised Learning with Deep Generative Models

1.7. Mean covariance RBM

1.8. Spike and slab RBM

1.9. DRAW: A Recurrent Neural Network For Image Generation

1.9.1. Implementation in Theano

1.10. An Infinite Restricted Boltzmann Machine

2. Feed-forward networks

2.1. Backpropagation

2.1.1. Rprop

2.1.1.1. Climin implementation

2.1.2. RMSProp

2.1.2.1. Climin implementation

2.1.3. Feedback alignment

2.1.4. Efficient backprop

2.1.5. Fundamental deep learning problem

2.1.6. AdaDelta

2.1.6.1. Climin implementation

2.1.6.2. In Caffe

2.1.7. Adam

2.1.7.1. Implementation by author

2.1.8. AdaGrad

2.1.9. Conjugate gradient

2.1.9.1. Climin implementation

2.1.10. Quasi-Newton

2.1.10.1. Climin implementation

2.1.11. Gradient Descent

2.1.11.1. Climin implementation

2.1.12. Automatic differentiation in machine learning: a survey

2.2. Linear rectifier

2.2.1. Rectified Linear Units Improve Restricted Boltzmann Machines

2.3. Sparsity

2.3.1. Dropout

2.3.2. DropConnect

2.3.3. Weight decay

2.4. Hessian-free optimization

2.5. Nesterov momentum

2.5.1. On the importance of initialization and momentum in deep learning

2.5.2. Simplified Nesterov momentum in section 3.5

3. Recurrent neural networks

3.1. Advances in optimizing recurrent networks

3.2. Long-Short Term Memory

3.3. Reservoir computing

3.3.1. Echo State Networks

3.3.2. Liquid state machines

3.3.3. SORN: a self-organizing recurrent neural network

3.4. Generating Text with Recurrent Neural Networks

3.5. Neural Turing Machines

3.6. DRAW: A Recurrent Neural Network For Image Generation

3.7. Learning to Execute

4. Convolutional neural networks

4.1. deeplearning.net tutorial

4.2. Feature extraction using convolution

4.3. Pooling

4.4. CIFAR-10

4.5. ImageNet Classification with Deep Convolutional Neural Networks

4.6. DeepFace

4.7. Visualizing and Understanding Convolutional Networks

4.8. FaceNet: A Unified Embedding for Face Recognition and Clustering

5. Learning

5.1. UFLDL Tutorial

5.2. Deep Learning in Neural Networks: An Overview

5.3. UCLA Summer School

5.4. Deep Learning tutorial by Ruslan Salakhutdinov

5.5. Deep Learning book by Yoshua Bengio et al

5.6. VGG Convolutional Neural Networks Practical

5.7. CS231n: Convolutional Neural Networks for Visual Recognition

5.8. CS224d: Deep Learning for Natural Language Processing

5.9. comp.ai.neura-networks

5.10. Supervised Sequence Labelling with Recurrent Neural Networks

6. Future

6.1. Deep Learning of Representations: Looking Forward

6.2. Scaling Up Deep Learning

7. Bayesian networks

7.1. Hierarchical temporal memory

7.1.1. Numenta whitepaper

7.1.2. Hierarchical Temp oral Memory Cortical Learning Algorithm for Pattern Recognition on Multi-core Architectures

7.1.3. Towards a Mathematical Theory of Cortical Micro-circuits

7.2. Learning with Hierarchical-Deep Models

7.3. Theory-based Bayesian models of inductive learning and reasoning

8. Biology

8.1. Towards Biologically Plausible Deep Learning

9. Pretrained models

9.1. MatConvNet

9.2. VGG: Very Deep Convolutional Networks for Large-Scale Visual Recognition

9.3. VGG: Return of the Devil in the Details: Delving Deep into Convolutional Networks

9.4. Caffe reference models

9.5. Caffe community models

10. Transfer learning

10.1. CNN Features off-the-shelf: an Astounding Baseline for Recognition

11. Practical

11.1. Practical Recommendations for Gradient-Based Training of Deep Architectures

11.2. Efficient BackProp

11.3. A Practical Guide to Training Restricted Boltzmann Machines

11.4. A Brief Overview of Deep Learning (Ilya Sutskever)

11.5. Stochastic Gradient Descent Tricks

12. Berkeley Semantic Boundaries Dataset and Benchmark (SBD)

13. Berkeley Video Segmentation Dataset (BVSD)

13.1. train

13.2. test

14. Berkeley Segmentation Data Set 300 (BSDS300)

15. Software

15.1. C/C++

15.1.1. RNNLM

15.1.2. GPUMLib

15.1.3. Shark

15.1.4. libccv

15.1.5. RNNLIB

15.1.6. OverFeat

15.1.7. ClConvolve (OpenCL)

15.1.8. cxxnet

15.1.9. EBLearn

15.1.10. currennt

15.1.11. nnForge

15.2. Java

15.2.1. Deeplearning4j

15.2.2. Encog

15.2.3. Nd4j

15.3. Javascript

15.3.1. ConvNetJS

15.4. Lua

15.4.1. Torch7

15.4.1.1. Neural Turing Machine

15.4.1.2. dp package

15.4.1.3. rnn: recurrent neural networks

15.4.1.4. Resources (Cheatsheet)

15.4.1.5. LSTM Units

15.4.1.6. Autograd

15.5. Matlab

15.5.1. DeepLearningToolbox

15.5.2. Matlab neural network toolbox

15.5.2.1. Documentation

15.5.3. convolutionalRBM

15.5.4. RBMS

15.5.4.1. Medal

15.5.4.2. Deepmat

15.5.4.3. Ruslan Salakhutdinov's examples (DBN, RBM)

15.5.5. convolutional nets

15.5.5.1. MatConvNet

15.5.5.2. cudacnn

15.5.5.3. myCNN

15.5.5.4. ConvNet

15.6. Python

15.6.1. Caffe

15.6.1.1. NVIDIA DIGITS

15.6.1.2. Expresso

15.6.1.3. R-CNN (object detector)

15.6.1.4. DeepDetect

15.6.1.5. NLPCaffe

15.6.2. climin

15.6.3. cudamat

15.6.4. cuda-convnet

15.6.5. cuda-convnet2

15.6.6. deepnet

15.6.7. PyBrain

15.6.8. Theano

15.6.8.1. Start here

15.6.8.2. PyLearn2

15.6.8.3. Blocks

15.6.8.4. Lasagne

15.6.8.4.1. recurrent layers

15.6.8.5. PDNN

15.6.8.6. Theanets

15.6.8.7. Keras

15.6.9. nolearn

15.6.10. CUV (RBMs)

15.6.11. GroundHog (RNNs)

15.6.12. Decaf

15.6.13. NervanaGPU

15.6.14. neon

15.6.15. Passage

15.6.16. List of Python toolkits

15.6.17. Chainer

15.6.18. Computation Graph Toolkit (CGT)

15.6.19. Gensim

15.6.20. Hebel

15.6.21. Brainstorm

15.6.22. Autograd

15.7. Service

15.7.1. Ersatzlabbs

15.8. Lists

15.8.1. Comparison of convnet implementations

15.8.2. deeplearning.net software links

15.8.3. Toronto deep learning codes

15.8.4. Teglor

15.9. iOS

15.9.1. DeepBeliefSDK

15.10. Julia

15.10.1. KUnet.jl

15.10.1.1. Beginning deep learning with 500 lines of Julia

15.10.2. Mocha.jl

15.10.3. Boltzmann.jl

15.11. Other

15.11.1. Ayda

16. Places

16.1. Universities

16.1.1. University of Toronto

16.1.1.1. Geoffrey Hinton

16.1.1.2. Ilya Sutskever

16.1.1.3. Alex Krizhevsky

16.1.1.4. Ruslan Salakhutdinov

16.1.1.5. Volodymyr Vmnih

16.1.1.6. Alex Graves

16.1.1.7. Nitish Srivastava

16.1.2. New York University

16.1.2.1. Yann LeCun

16.1.3. University of Montreal

16.1.3.1. Yoshua Bengio

16.1.3.2. Tomas Mikolov

16.1.4. University of Standford

16.1.4.1. Andrew Ng

16.1.4.2. Andrej Karpathy

16.1.5. Computer Vision and Active Perception Lab, KTH Royal Institute of Technology

16.1.5.1. Ali Sharif Razavian

16.1.5.2. Hossein Azizpour

16.1.5.3. Josephine Sullivan

16.2. Companies

16.2.1. Big names

16.2.1.1. Google

16.2.1.1.1. DeepMind

16.2.1.2. Facebook

16.2.1.3. Microsoft Research

16.2.1.4. Baidu

16.2.1.5. Flickr

16.2.1.5.1. Park or bird

16.2.2. Startups

16.2.2.1. Numenta

16.2.2.1.1. Jeff Hawkins

16.2.2.1.2. Dileep George

16.2.2.2. Vicarious

16.2.2.3. Metamind

16.2.2.3.1. Richard Socher

16.2.2.4. Clarify

16.2.2.4.1. Matthew D. Zeiler

16.2.2.5. Enlitic

16.2.2.5.1. Jeremy Howard

16.2.2.6. Nervana

16.2.2.7. Whetlab

16.2.2.7.1. Ryan Adams

16.2.2.7.2. Hugo Larochelle

16.2.2.7.3. Jasper Snoek

16.2.2.7.4. Kevin Swersky

17. Reinforcement learning

17.1. Q-learning tutorial

17.2. Playing Atari with Deep Reinforcement Learning

17.2.1. Nathan's implementation

17.2.2. Brian's implementation

17.2.3. Our implementation

17.2.4. Deep Q Learning Demo

17.3. Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural Reinforcement Learning Method

17.4. A Monte-Carlo AIXI Approximation

17.5. Human-level control through deep reinforcement learning

17.6. Tutorial on Multi-Agent Reinforcement Learning

17.7. Distributed Deep Q-Learning

17.7.1. Code

18. Multimodal networks

18.1. Ruslan Salakhutdinov's video

18.2. Multimodal Learning with Deep Boltzmann Machines

19. Datasets

19.1. Images

19.1.1. MNIST

19.1.2. CIFAR-10/100

19.1.3. ImageNet

19.1.4. Caltech101

19.1.5. Caltech256

19.1.6. Berkeley Segmentation Data Set 500 (BSDS500)

19.2. Image-Text

19.2.1. The generalized 1M image-caption corpus

19.2.2. Microsoft COCO

19.3. Faces

19.3.1. Labeled Faces in the Wild

19.3.2. Weakly Labeled Face Databases

19.3.3. YouTube faces