Machine Learning
by Achilles Rasquinha
1. Deep Learning
1.1. Architectures
1.1.1. Convolutional Neural Networks
1.1.2. Recurrent Neural Networks
1.1.2.1. GRU
2. Types of Learning
2.1. Supervised Learning
2.1.1. Classification
2.1.1.1. based-on types
2.1.1.1.1. Binary Classification
2.1.1.1.2. Multi-Class Classification
2.1.1.2. based-on algorithms
2.1.1.2.1. Logistic Regression
2.1.1.2.2. k-Nearest Neighbours
2.1.2. Regression
2.1.2.1. Linear Regression
2.2. Semi-Supervised Learning
2.3. Unsupervised Learning
2.3.1. Clustering
2.3.1.1. K-Means
2.4. Reinforcement Learning
3. How to approach a Problem?
3.1. Define your Problem
3.1.1. Problem Statement
3.1.2. Problem Description
3.1.3. Data Set Description