Calculus

Get Started. It's Free Calculus 1. Not within mindmap

1.1.1. POSITIVE Infinite Limit

1.1.2. NEGATIVE  Infinite Limit

1.1.3. Limits from the LEFT

1.1.4. Limits from the RIGHT

2. Theorems

2.2. COMPARISON THEOREM                                                                                                               lim f(x) exists, lim g(x) exists ,                             f(x) < g(x) for all x in the neighbourhood of a except for a itself                                                                                                                        Then,    lim f(x) < lim g(x)

2.2.1. SQUEEZE THEOREM                                                                                                                                                                                                                                                                                       lim g1(x) exists , lim g2(x) exists,                                                                                                           lim g1(x) = g2(x)                                                                                                                              g1(x) < f(x) < g2(x) for all x in the neighbourhood of a except for a itself                                                                                                                                                                                                     Then, 1) limf(x) exists                                                                                                                                      2) lim f(x) = lim g1(x) = lim g2(x)

4. Tangent

4.2. dy/dx = 0 , gradient = 0

4.2.1. Turnings points of curves

4.2.2. Points of Inflexions                                         - Different from turnings points as the RHS and LHS of turning points goes opp directions ( 1 up 1 down )

7. CONTINUITY

7.1. Definition of Continuous Function

7.1.1. a ε dom(f)

7.1.2. lim f(x) exists

7.1.2.1. Use ONE SIDED LIMITS TO PROVE (RHS = LHS)

7.1.3. lim f(x) = f(a)

7.2. Pass Limits into Continuous Functions  (Theorem)

7.2.1. ASSUME that 1) lim g(x) exists

7.2.2. 2)  f is continuous at lim g(x)

7.2.3. THEN lim f ( g(x) ) = f ( lim g(x) )

7.3. Compositions of Continuous Functions  (Theorem)

7.3.1. ASSUME that 1 ) g(x) is continuous at a

7.3.2. 2) f(x) is continuous at g(a)

7.3.3. THEN : (F o G)(x) is continuous at a

7.4. Continuous on an interval , IVT THEOREM           - F IS A FUNCTION                                         - N,a,b ε R with a < b

7.4.1. ASSUME that : f is continuous on a closed interval [ a,b]

7.4.2. f(a) NOT EQUAL TO f(b)

7.4.3. N lies between f(a) and f(b)

7.4.4. THEN : There exists a number c s.t.                                                                                                           1) a < c < b                                                     2) f(c) = N

8. Differentiable/ Derivatives

8.1. Definition of ' Derivative at a '

8.1.1. f'(a) =  lim f( a+h) - f(a)

8.1.1.1. IF LIMIT EXISTS, f(a) IS DIFFERENTIABLE AT a, if limits DNE, DERIVATIVE IS NOT DEFINED AT a       NOTE:                                                          THIS ACTUALLY ALSO MAKES UP THE DEFINITION OF ' THE DERIVATIVE FUNCTION '

8.1.1.1.1. Theorem : If a function f is differentiable at point a, it is continuous at a.

8.2. Useful rules

8.2.1. Power Rule

8.2.1.1. Let n ε N , and x,a ε R ,

8.2.1.2. THEN:                                                              (x-n)(x                             ) = x   - a

8.2.2. Product Rule

8.2.2.1. ASSUME that :  f(x) is differentiable at point a

8.2.2.2. g(x) is differentiable at a

8.2.2.3. THEN: f(x)g(x) is also differentiable at a

8.2.2.3.1. [ f(x)g(x) ] ' = f'(a)g(a) + f(a)g'(a)

9. L' Hopital Rule

9.1. SUPER IMPORTANT!!! ONLY APPLIES ON LIM 0/0

9.1.1. DIFFERENTIATE TOP AND BOTTOM INDIVIDUALLY (leave in the same form)

9.1.2. STATE THAT YOU ARE USING L'HOPITAL RULE

10. ROLLE'S THEOREM                                                                                                            Note:                                                          - a and b are the EXTREME VALUES

10.2. Continuous in [ a , b ]

10.2.1. USE ONE SIDED LIMITS TO CHECK, LHS = RHS

10.3. Differentiable in ( a , b )

10.3.1. Check whether dx/dy is defined at every point within interval

10.3.1.1. Basically dy/dx DENOMINATOR NOT EQUAL TO 0