Get Started. It's Free
or sign up with your email address
AP Physics by Mind Map: AP Physics

1. 2-D Kinematics

1.1. Formulae

1.1.1. y-direction

1.1.1.1. y = yo + vot +½at²

1.1.2. x-direction

1.1.2.1. x = xo + vot

1.1.2.2. NO ACCELERATION

1.2. Units

1.2.1. Acceleration = g = 9.8m/s²

1.3. Definitions

1.3.1. 2-D Motion

1.3.1.1. motion in two direction

1.3.2. Projectile Motion

1.3.2.1. motion with constant velocity in one direction and constant acceleration in another

1.3.2.2. Parabolic path

1.4. Graphs

1.4.1. Position(x) vs. Time(t)

1.4.1.1. Parabolic path

1.4.1.1.1. Midpoint = 0m/s

1.4.2. Velocity(v) vs. Time(t)

1.4.2.1. Constant(downward) slope

1.4.3. Acceleration(a) vs. Time(t)

1.4.3.1. Linear

2. Newton's Laws of Motion

2.1. The Laws

2.1.1. Newton's 1st Law

2.1.1.1. ∑F= 0

2.1.2. Newton's 2nd Law

2.1.2.1. ∑F=ma

2.1.3. Newton's 3rd Law

2.1.3.1. Equal but Opposite

2.2. Concepts

2.2.1. Weight

2.2.1.1. w = mg

2.2.2. Free Body Diagram

2.2.2.1. Normal Force

2.2.2.1.1. Perpendicular to surface object is on

2.2.2.2. Weight

2.2.2.2.1. Always STRAIGHT down.

2.2.2.3. Tension

2.2.2.3.1. Vertical Tension

2.2.2.3.2. Horizontal Tension

2.3. Friction

2.3.1. F = μN

2.3.2. μ = coefficient of friction

2.3.2.1. static

2.3.2.1.1. Applies when the object is not in motion

2.3.2.2. kinetic

2.3.2.2.1. Applies when the object is in motion

2.4. Justinian Acceleration Conjecture

2.4.1. ±a=[|W1(sin θ1 – μk cos θ1)±W2(sin θ2 – μk cos θ2)|]/(m1+m2)

3. Energy

3.1. Work and Kinetic Energy

3.1.1. Formulae

3.1.1.1. Kinetic Energy

3.1.1.1.1. K = ½mv²

3.1.1.2. Work

3.1.1.2.1. W = F∆dcosθ

3.1.1.3. Power

3.1.1.3.1. P = W/t = ∆E/t

3.1.1.4. Power

3.1.1.4.1. P = Fvcosθ

3.1.1.5. Spring Force

3.1.1.5.1. F = -k∆x

3.1.2. Units

3.1.2.1. Energy = E

3.1.2.1.1. Kinetic = K

3.1.2.1.2. Potential = U

3.1.2.2. Work = W

3.1.2.3. Spring Constant = k

3.1.3. Concepts

3.1.3.1. Pendulums

3.1.3.1.1. Independent from mass

3.1.3.2. Springs

3.2. Potential Energy and Conservation of Energy

3.2.1. Formulae

3.2.1.1. Gravitational Potential Energy

3.2.1.1.1. U = mgh

3.2.1.2. Potential Energy of a Spring

3.2.1.2.1. U = ½kx²

3.2.1.3. Gravitational Potential Energy

3.2.1.3.1. U = -GMm/r

3.2.2. Units

3.2.2.1. Gravitational Constant = G

3.2.2.2. U = Potential Energy

3.2.3. Law of Conservation of Energy

4. Linear Momentum and Collisions

4.1. Formulae

4.1.1. p = mv

4.1.2. J = m∆v = F∆t

4.1.3. F = m∆v/∆t

4.2. Units

4.2.1. Momentum = p

5. Circular Motion and Gravitation

5.1. Centripetal Acceleration

5.1.1. AC=V2/R

5.2. Tangential Velocity

5.2.1. V=2πr/T

5.3. Period

5.3.1. T=1/f

5.4. Frequency

5.4.1. f=1/T

5.5. Centripetal Force

5.5.1. FC=mv2/r

5.6. Gravitational Force

5.6.1. FG=Gmm/r2

5.7. Orbital Speed

5.7.1. V=(Gm/r)^0.5

6. Thermodynamics

6.1. Linear Expansion

6.2. Volumetric Expansion

6.3. Ideal Gas Law

6.3.1. PV=nRT

6.4. Combined Gas Law

6.4.1. P1V1/T1=P2V2/T2

6.5. Internal Energy

6.5.1. U=3nRT/2

6.6. Heat Transfer

6.7. Thermal Conduction

6.8. First Law

6.9. Efficiency

6.9.1. e= W/QH

6.9.2. e= QH-QC/QH

6.9.3. e= 1-(TC/TH)

7. Modern Physics

7.1. Quantum

7.1.1. Formulae

7.1.1.1. Energy of a photon

7.1.1.1.1. E = hf

7.1.1.2. Photoelectric effect

7.1.1.2.1. Km = hf - φ

7.1.1.3. Momentum of a photon

7.1.1.3.1. p = h/λ

7.1.1.4. de Broglie wavelength

7.1.1.4.1. λ = h/p

7.1.1.5. Mass-energy equivalence

7.1.1.5.1. ∆E = (∆m)c²

7.1.1.6. Momentum

7.1.1.6.1. p= (2mk)^1/2

7.1.2. Units

7.1.2.1. φ = work function

7.1.2.2. h = Planck's constant

7.1.2.3. fₒ = threshold frequency

7.1.3. Concepts

7.1.3.1. Photoelectric effect

7.1.3.2. Compton effect

7.2. Nuclear

8. 1-D Kinematics

8.1. Formulae

8.1.1. v = vₒ +a∆t

8.1.2. x = xₒ + vt +½at²

8.1.3. v² = vₒ² +2a∆x

8.2. Definitions

8.2.1. Kinematics

8.2.1.1. the motion of an object

8.2.2. Vector

8.2.2.1. Magnitude + direction

8.2.3. Scalar

8.2.3.1. Magnitude

8.3. Graphs

8.3.1. Position(x) vs. Time(t)

8.3.1.1. Slope(m)=velocity(v)

8.3.2. Velocity(v) vs. Time(t)

8.3.2.1. Slope(m)=acceleration(a)

8.3.3. Acceleration(a) vs. Time(t)

8.4. Units

8.4.1. Distance = d

8.4.2. Displacement = ∆x

8.4.3. Velocity = v

8.4.4. Acceleration = a

8.4.5. Time = t

9. Fluids

9.1. Flowing Formulae

9.1.1. Absolute Pressure

9.1.1.1. P=Po + ρgh

9.1.2. Torricelli's Thereom

9.1.2.1. v=(2gh)^0.5

9.1.3. Bernoulli's Equation

9.1.3.1. P+1/2ρv^2+ρgh=Constant

9.1.4. Volume Flow Rate

9.1.4.1. R=vA

9.1.5. Fluid Velocity

9.1.5.1. A1v1=A2v2

9.2. Static Formulae

9.2.1. Density

9.2.1.1. ρ=m/V

9.2.2. Pressure

9.2.2.1. P=F/A

9.2.3. Fluid Pressure

9.2.3.1. P=ρgh

9.2.4. Buoyant Force

9.2.4.1. F=ρgV

9.2.5. Specifc Gravity

9.2.5.1. SG=ρobj/ρwater

10. Waves/Vibrations

10.1. Period of Spring

10.1.1. TS=2π(m/k)½

10.2. Period of Pendulum

10.2.1. TP=2π(L/g)^½

10.3. Wave Speed

10.4. Energy of SHM Object

10.4.1. E= ½mv^2 + ½kx^2

10.5. Transverse Wave Velocity

10.5.1. v=[FT/(m/L)]^½

11. Sound

11.1. Speed of Sound

11.1.1. v=331 + 0.6T

11.2. Intensity

11.2.1. β=10 log I/IO

11.3. Harmonic Frequency

11.3.1. Open/Open and Closed/ Closed

11.3.1.1. FN=nv/2L

11.3.2. Open/Closed

11.3.2.1. FN=v(2n-1)/4L

11.4. Beat Frequency

11.4.1. FB=F1-F2

11.5. Doppler Effect

11.5.1. f=fo[(v+vo)/(v+vs)]

11.6. Sound Inteference

11.6.1. Constructive

11.6.2. Destructive

12. Electrostatics

12.1. Coulomb's Law

12.1.1. Fq= kQ1Q2/r^2

12.2. Electric Field

12.2.1. E=F/q

12.3. Field from Point Charge

12.3.1. E= kQ/r^2

12.4. Electric Potential Energy

12.4.1. UE= qV

12.5. Electric Potential from Point

12.5.1. V=kQ/r

12.6. Potential Difference

12.6.1. ∆Vab= Wab/q

12.6.2. Vab= Ed cos θ

12.7. Voltage

12.7.1. V=Ex

12.7.1.1. ∑V=kQ/r

12.8. Work by Electric Force/Field

12.8.1. WE= kQQ/r

12.8.2. W= q∆V

12.9. Electric Potential Energy

12.9.1. ∆UE= qEx

13. Circuits

13.1. Current

13.1.1. I= Q/t

13.2. Resistance

13.2.1. R= ρL/A

13.3. Ohm's Law

13.3.1. V= IR

13.4. Power

13.4.1. P=IV=I^2R=V^2/R

13.5. Capacitance

13.5.1. Q=CV

13.5.2. Stored Energy

13.5.2.1. UC= ½QV= ½CV²= ½Q²/V

13.6. Resistors in Series

13.7. Resistors in Parallel

13.8. Capacitors in Series

13.9. Capacitors in Parallel

13.10. Kirchoff's Rules

13.10.1. Junction Rule

13.10.1.1. ∑I=0

13.10.2. Loop Rule

13.10.2.1. ∑V=0

14. Optics

14.1. Formulae

14.1.1. Speed of light

14.1.1.1. c = fλ

14.1.2. Index of refraction

14.1.2.1. n = c/v

14.1.3. Snell's Law

14.1.3.1. n1sinθ1 = n2sinθ2

14.1.4. Critical angle

14.1.4.1. sinθc = n2/n1

14.1.5. Thin lens equation

14.1.5.1. 1/f = (1/di)+(1/do)

14.1.6. Magnification

14.1.6.1. M = hi/ho = -di/do

14.1.7. Focal length and radius of curvature

14.1.7.1. f = R/2

14.1.8. Diffraction

14.1.8.1. mλ = dsinθ

14.1.9. Diffraction small angle approx.

14.1.9.1. xm = mλL/d

14.2. Concepts

14.2.1. Law of Reflection

14.2.1.1. θi = θr

14.2.2. Law of Refraction

14.2.2.1. n1sinθ1 = n2sinθ2

14.2.3. Ray diagrams

14.2.4. Mirrors

14.2.4.1. Plane

14.2.4.2. Concave

14.2.4.2.1. do<f

14.2.4.2.2. do=f

14.2.4.2.3. 2f>do>f

14.2.4.2.4. do = 2f

14.2.4.2.5. do>2f

14.2.4.3. Convex

14.2.5. Lenses

14.2.5.1. Converging

14.2.5.1.1. do < f

14.2.5.1.2. do=f

14.2.5.1.3. 2f>do>f

14.2.5.1.4. do = 2f

14.2.5.1.5. do>2f

14.2.5.2. Diverging

14.2.6. Thin film interference

14.3. Units

14.3.1. f = focal point

14.3.2. Center of Curvature = 2f

15. Magnetism

15.1. Magnetic Flux

15.2. Magnetic Field

15.2.1. B= μoI/2πr

15.3. Force on Wire

15.3.1. F= LIB sin θ

15.4. Force on Particle

15.4.1. Fq= qvB sin θ

15.5. Ion Path

15.5.1. r=mv/qB

15.6. Force Between Wires

15.6.1. F/L= μoI1I2/2πd

15.7. Right Hand Rules

15.7.1. Wire Rule

15.7.2. Field Rule

15.8. Field in a Coil

15.9. Induced EMF

15.9.1. V=vLB sin θ

15.10. Lenz's Law