
1. 2-D Kinematics
1.1. Formulae
1.1.1. y-direction
1.1.1.1. y = yo + vot +½at²
1.1.2. x-direction
1.1.2.1. x = xo + vot
1.1.2.2. NO ACCELERATION
1.2. Units
1.2.1. Acceleration = g = 9.8m/s²
1.3. Definitions
1.3.1. 2-D Motion
1.3.1.1. motion in two direction
1.3.2. Projectile Motion
1.3.2.1. motion with constant velocity in one direction and constant acceleration in another
1.3.2.2. Parabolic path
1.4. Graphs
1.4.1. Position(x) vs. Time(t)
1.4.1.1. Parabolic path
1.4.1.1.1. Midpoint = 0m/s
1.4.2. Velocity(v) vs. Time(t)
1.4.2.1. Constant(downward) slope
1.4.3. Acceleration(a) vs. Time(t)
1.4.3.1. Linear
2. 1-D Kinematics
2.1. Formulae
2.1.1. v = vₒ +a∆t
2.1.2. x = xₒ + vt +½at²
2.1.3. v² = vₒ² +2a∆x
2.2. Definitions
2.2.1. Kinematics
2.2.1.1. the motion of an object
2.2.2. Vector
2.2.2.1. Magnitude + direction
2.2.3. Scalar
2.2.3.1. Magnitude
2.3. Graphs
2.3.1. Position(x) vs. Time(t)
2.3.1.1. Slope(m)=velocity(v)
2.3.2. Velocity(v) vs. Time(t)
2.3.2.1. Slope(m)=acceleration(a)
2.3.3. Acceleration(a) vs. Time(t)
2.4. Units
2.4.1. Distance = d
2.4.2. Displacement = ∆x
2.4.3. Velocity = v
2.4.4. Acceleration = a
2.4.5. Time = t
3. Newton's Laws of Motion
3.1. The Laws
3.1.1. Newton's 1st Law
3.1.1.1. ∑F= 0
3.1.2. Newton's 2nd Law
3.1.2.1. ∑F=ma
3.1.3. Newton's 3rd Law
3.1.3.1. Equal but Opposite
3.2. Concepts
3.2.1. Weight
3.2.1.1. w = mg
3.2.2. Free Body Diagram
3.2.2.1. Normal Force
3.2.2.1.1. Perpendicular to surface object is on
3.2.2.2. Weight
3.2.2.2.1. Always STRAIGHT down.
3.2.2.3. Tension
3.2.2.3.1. Vertical Tension
3.2.2.3.2. Horizontal Tension
3.3. Friction
3.3.1. F = μN
3.3.2. μ = coefficient of friction
3.3.2.1. static
3.3.2.1.1. Applies when the object is not in motion
3.3.2.2. kinetic
3.3.2.2.1. Applies when the object is in motion
3.4. Justinian Acceleration Conjecture
3.4.1. ±a=[|W1(sin θ1 – μk cos θ1)±W2(sin θ2 – μk cos θ2)|]/(m1+m2)
4. Energy
4.1. Work and Kinetic Energy
4.1.1. Formulae
4.1.1.1. Kinetic Energy
4.1.1.1.1. K = ½mv²
4.1.1.2. Work
4.1.1.2.1. W = F∆dcosθ
4.1.1.3. Power
4.1.1.3.1. P = W/t = ∆E/t
4.1.1.4. Power
4.1.1.4.1. P = Fvcosθ
4.1.1.5. Spring Force
4.1.1.5.1. F = -k∆x
4.1.2. Units
4.1.2.1. Energy = E
4.1.2.1.1. Kinetic = K
4.1.2.1.2. Potential = U
4.1.2.2. Work = W
4.1.2.3. Spring Constant = k
4.1.3. Concepts
4.1.3.1. Pendulums
4.1.3.1.1. Independent from mass
4.1.3.2. Springs
4.2. Potential Energy and Conservation of Energy
4.2.1. Formulae
4.2.1.1. Gravitational Potential Energy
4.2.1.1.1. U = mgh
4.2.1.2. Potential Energy of a Spring
4.2.1.2.1. U = ½kx²
4.2.1.3. Gravitational Potential Energy
4.2.1.3.1. U = -GMm/r
4.2.2. Units
4.2.2.1. Gravitational Constant = G
4.2.2.2. U = Potential Energy
4.2.3. Law of Conservation of Energy
5. Linear Momentum and Collisions
5.1. Formulae
5.1.1. p = mv
5.1.2. J = m∆v = F∆t
5.1.3. F = m∆v/∆t
5.2. Units
5.2.1. Momentum = p
6. Circular Motion and Gravitation
6.1. Centripetal Acceleration
6.1.1. AC=V2/R
6.2. Tangential Velocity
6.2.1. V=2πr/T
6.3. Period
6.3.1. T=1/f
6.4. Frequency
6.4.1. f=1/T
6.5. Centripetal Force
6.5.1. FC=mv2/r
6.6. Gravitational Force
6.6.1. FG=Gmm/r2
6.7. Orbital Speed
6.7.1. V=(Gm/r)^0.5
7. Fluids
7.1. Flowing Formulae
7.1.1. Absolute Pressure
7.1.1.1. P=Po + ρgh
7.1.2. Torricelli's Thereom
7.1.2.1. v=(2gh)^0.5
7.1.3. Bernoulli's Equation
7.1.3.1. P+1/2ρv^2+ρgh=Constant
7.1.4. Volume Flow Rate
7.1.4.1. R=vA
7.1.5. Fluid Velocity
7.1.5.1. A1v1=A2v2
7.2. Static Formulae
7.2.1. Density
7.2.1.1. ρ=m/V
7.2.2. Pressure
7.2.2.1. P=F/A
7.2.3. Fluid Pressure
7.2.3.1. P=ρgh
7.2.4. Buoyant Force
7.2.4.1. F=ρgV
7.2.5. Specifc Gravity
7.2.5.1. SG=ρobj/ρwater
8. Waves/Vibrations
8.1. Period of Spring
8.1.1. TS=2π(m/k)½
8.2. Period of Pendulum
8.2.1. TP=2π(L/g)^½
8.3. Wave Speed
8.4. Energy of SHM Object
8.4.1. E= ½mv^2 + ½kx^2
8.5. Transverse Wave Velocity
8.5.1. v=[FT/(m/L)]^½
9. Sound
9.1. Speed of Sound
9.1.1. v=331 + 0.6T
9.2. Intensity
9.2.1. β=10 log I/IO
9.3. Harmonic Frequency
9.3.1. Open/Open and Closed/ Closed
9.3.1.1. FN=nv/2L
9.3.2. Open/Closed
9.3.2.1. FN=v(2n-1)/4L
9.4. Beat Frequency
9.4.1. FB=F1-F2
9.5. Doppler Effect
9.5.1. f=fo[(v+vo)/(v+vs)]
9.6. Sound Inteference
9.6.1. Constructive
9.6.2. Destructive
10. Thermodynamics
10.1. Linear Expansion
10.2. Volumetric Expansion
10.3. Ideal Gas Law
10.3.1. PV=nRT
10.4. Combined Gas Law
10.4.1. P1V1/T1=P2V2/T2
10.5. Internal Energy
10.5.1. U=3nRT/2
10.6. Heat Transfer
10.7. Thermal Conduction
10.8. First Law
10.9. Efficiency
10.9.1. e= W/QH
10.9.2. e= QH-QC/QH
10.9.3. e= 1-(TC/TH)
11. Electrostatics
11.1. Coulomb's Law
11.1.1. Fq= kQ1Q2/r^2
11.2. Electric Field
11.2.1. E=F/q
11.3. Field from Point Charge
11.3.1. E= kQ/r^2
11.4. Electric Potential Energy
11.4.1. UE= qV
11.5. Electric Potential from Point
11.5.1. V=kQ/r
11.6. Potential Difference
11.6.1. ∆Vab= Wab/q
11.6.2. Vab= Ed cos θ
11.7. Voltage
11.7.1. V=Ex
11.7.1.1. ∑V=kQ/r
11.8. Work by Electric Force/Field
11.8.1. WE= kQQ/r
11.8.2. W= q∆V
11.9. Electric Potential Energy
11.9.1. ∆UE= qEx
12. Circuits
12.1. Current
12.1.1. I= Q/t
12.2. Resistance
12.2.1. R= ρL/A
12.3. Ohm's Law
12.3.1. V= IR
12.4. Power
12.4.1. P=IV=I^2R=V^2/R
12.5. Capacitance
12.5.1. Q=CV
12.5.2. Stored Energy
12.5.2.1. UC= ½QV= ½CV²= ½Q²/V
12.6. Resistors in Series
12.7. Resistors in Parallel
12.8. Capacitors in Series
12.9. Capacitors in Parallel
12.10. Kirchoff's Rules
12.10.1. Junction Rule
12.10.1.1. ∑I=0
12.10.2. Loop Rule
12.10.2.1. ∑V=0
13. Optics
13.1. Formulae
13.1.1. Speed of light
13.1.1.1. c = fλ
13.1.2. Index of refraction
13.1.2.1. n = c/v
13.1.3. Snell's Law
13.1.3.1. n1sinθ1 = n2sinθ2
13.1.4. Critical angle
13.1.4.1. sinθc = n2/n1
13.1.5. Thin lens equation
13.1.5.1. 1/f = (1/di)+(1/do)
13.1.6. Magnification
13.1.6.1. M = hi/ho = -di/do
13.1.7. Focal length and radius of curvature
13.1.7.1. f = R/2
13.1.8. Diffraction
13.1.8.1. mλ = dsinθ
13.1.9. Diffraction small angle approx.
13.1.9.1. xm = mλL/d
13.2. Concepts
13.2.1. Law of Reflection
13.2.1.1. θi = θr
13.2.2. Law of Refraction
13.2.2.1. n1sinθ1 = n2sinθ2
13.2.3. Ray diagrams
13.2.4. Mirrors
13.2.4.1. Plane
13.2.4.2. Concave
13.2.4.2.1. do<f
13.2.4.2.2. do=f
13.2.4.2.3. 2f>do>f
13.2.4.2.4. do = 2f
13.2.4.2.5. do>2f
13.2.4.3. Convex
13.2.5. Lenses
13.2.5.1. Converging
13.2.5.1.1. do < f
13.2.5.1.2. do=f
13.2.5.1.3. 2f>do>f
13.2.5.1.4. do = 2f
13.2.5.1.5. do>2f
13.2.5.2. Diverging
13.2.6. Thin film interference
13.3. Units
13.3.1. f = focal point
13.3.2. Center of Curvature = 2f
14. Magnetism
14.1. Magnetic Flux
14.2. Magnetic Field
14.2.1. B= μoI/2πr
14.3. Force on Wire
14.3.1. F= LIB sin θ
14.4. Force on Particle
14.4.1. Fq= qvB sin θ
14.5. Ion Path
14.5.1. r=mv/qB
14.6. Force Between Wires
14.6.1. F/L= μoI1I2/2πd
14.7. Right Hand Rules
14.7.1. Wire Rule
14.7.2. Field Rule
14.8. Field in a Coil
14.9. Induced EMF
14.9.1. V=vLB sin θ
14.10. Lenz's Law
15. Modern Physics
15.1. Quantum
15.1.1. Formulae
15.1.1.1. Energy of a photon
15.1.1.1.1. E = hf
15.1.1.2. Photoelectric effect
15.1.1.2.1. Km = hf - φ
15.1.1.3. Momentum of a photon
15.1.1.3.1. p = h/λ
15.1.1.4. de Broglie wavelength
15.1.1.4.1. λ = h/p
15.1.1.5. Mass-energy equivalence
15.1.1.5.1. ∆E = (∆m)c²
15.1.1.6. Momentum
15.1.1.6.1. p= (2mk)^1/2
15.1.2. Units
15.1.2.1. φ = work function
15.1.2.2. h = Planck's constant
15.1.2.3. fₒ = threshold frequency
15.1.3. Concepts
15.1.3.1. Photoelectric effect
15.1.3.2. Compton effect