1. 2-D Kinematics
1.1. Formulae
1.1.1. y-direction
1.1.1.1. y = yo + vot +½at²
1.1.2. x-direction
1.1.2.1. x = xo + vot
1.1.2.2. NO ACCELERATION
1.2. Units
1.2.1. Acceleration = g = 9.8m/s²
1.3. Definitions
1.3.1. 2-D Motion
1.3.1.1. motion in two direction
1.3.2. Projectile Motion
1.3.2.1. motion with constant velocity in one direction and constant acceleration in another
1.3.2.2. Parabolic path
1.4. Graphs
1.4.1. Position(x) vs. Time(t)
1.4.1.1. Parabolic path
1.4.1.1.1. Midpoint = 0m/s
1.4.2. Velocity(v) vs. Time(t)
1.4.2.1. Constant(downward) slope
1.4.3. Acceleration(a) vs. Time(t)
1.4.3.1. Linear
2. Newton's Laws of Motion
2.1. The Laws
2.1.1. Newton's 1st Law
2.1.1.1. ∑F= 0
2.1.2. Newton's 2nd Law
2.1.2.1. ∑F=ma
2.1.3. Newton's 3rd Law
2.1.3.1. Equal but Opposite
2.2. Concepts
2.2.1. Weight
2.2.1.1. w = mg
2.2.2. Free Body Diagram
2.2.2.1. Normal Force
2.2.2.1.1. Perpendicular to surface object is on
2.2.2.2. Weight
2.2.2.2.1. Always STRAIGHT down.
2.2.2.3. Tension
2.2.2.3.1. Vertical Tension
2.2.2.3.2. Horizontal Tension
2.3. Friction
2.3.1. F = μN
2.3.2. μ = coefficient of friction
2.3.2.1. static
2.3.2.1.1. Applies when the object is not in motion
2.3.2.2. kinetic
2.3.2.2.1. Applies when the object is in motion
2.4. Justinian Acceleration Conjecture
2.4.1. ±a=[|W1(sin θ1 – μk cos θ1)±W2(sin θ2 – μk cos θ2)|]/(m1+m2)
3. Energy
3.1. Work and Kinetic Energy
3.1.1. Formulae
3.1.1.1. Kinetic Energy
3.1.1.1.1. K = ½mv²
3.1.1.2. Work
3.1.1.2.1. W = F∆dcosθ
3.1.1.3. Power
3.1.1.3.1. P = W/t = ∆E/t
3.1.1.4. Power
3.1.1.4.1. P = Fvcosθ
3.1.1.5. Spring Force
3.1.1.5.1. F = -k∆x
3.1.2. Units
3.1.2.1. Energy = E
3.1.2.1.1. Kinetic = K
3.1.2.1.2. Potential = U
3.1.2.2. Work = W
3.1.2.3. Spring Constant = k
3.1.3. Concepts
3.1.3.1. Pendulums
3.1.3.1.1. Independent from mass
3.1.3.2. Springs
3.2. Potential Energy and Conservation of Energy
3.2.1. Formulae
3.2.1.1. Gravitational Potential Energy
3.2.1.1.1. U = mgh
3.2.1.2. Potential Energy of a Spring
3.2.1.2.1. U = ½kx²
3.2.1.3. Gravitational Potential Energy
3.2.1.3.1. U = -GMm/r
3.2.2. Units
3.2.2.1. Gravitational Constant = G
3.2.2.2. U = Potential Energy
3.2.3. Law of Conservation of Energy
4. Linear Momentum and Collisions
4.1. Formulae
4.1.1. p = mv
4.1.2. J = m∆v = F∆t
4.1.3. F = m∆v/∆t
4.2. Units
4.2.1. Momentum = p
5. Circular Motion and Gravitation
5.1. Centripetal Acceleration
5.1.1. AC=V2/R
5.2. Tangential Velocity
5.2.1. V=2πr/T
5.3. Period
5.3.1. T=1/f
5.4. Frequency
5.4.1. f=1/T
5.5. Centripetal Force
5.5.1. FC=mv2/r
5.6. Gravitational Force
5.6.1. FG=Gmm/r2
5.7. Orbital Speed
5.7.1. V=(Gm/r)^0.5
6. Thermodynamics
6.1. Linear Expansion
6.2. Volumetric Expansion
6.3. Ideal Gas Law
6.3.1. PV=nRT
6.4. Combined Gas Law
6.4.1. P1V1/T1=P2V2/T2
6.5. Internal Energy
6.5.1. U=3nRT/2
6.6. Heat Transfer
6.7. Thermal Conduction
6.8. First Law
6.9. Efficiency
6.9.1. e= W/QH
6.9.2. e= QH-QC/QH
6.9.3. e= 1-(TC/TH)
7. Modern Physics
7.1. Quantum
7.1.1. Formulae
7.1.1.1. Energy of a photon
7.1.1.1.1. E = hf
7.1.1.2. Photoelectric effect
7.1.1.2.1. Km = hf - φ
7.1.1.3. Momentum of a photon
7.1.1.3.1. p = h/λ
7.1.1.4. de Broglie wavelength
7.1.1.4.1. λ = h/p
7.1.1.5. Mass-energy equivalence
7.1.1.5.1. ∆E = (∆m)c²
7.1.1.6. Momentum
7.1.1.6.1. p= (2mk)^1/2
7.1.2. Units
7.1.2.1. φ = work function
7.1.2.2. h = Planck's constant
7.1.2.3. fₒ = threshold frequency
7.1.3. Concepts
7.1.3.1. Photoelectric effect
7.1.3.2. Compton effect
7.2. Nuclear
8. 1-D Kinematics
8.1. Formulae
8.1.1. v = vₒ +a∆t
8.1.2. x = xₒ + vt +½at²
8.1.3. v² = vₒ² +2a∆x
8.2. Definitions
8.2.1. Kinematics
8.2.1.1. the motion of an object
8.2.2. Vector
8.2.2.1. Magnitude + direction
8.2.3. Scalar
8.2.3.1. Magnitude
8.3. Graphs
8.3.1. Position(x) vs. Time(t)
8.3.1.1. Slope(m)=velocity(v)
8.3.2. Velocity(v) vs. Time(t)
8.3.2.1. Slope(m)=acceleration(a)
8.3.3. Acceleration(a) vs. Time(t)
8.4. Units
8.4.1. Distance = d
8.4.2. Displacement = ∆x
8.4.3. Velocity = v
8.4.4. Acceleration = a
8.4.5. Time = t
9. Fluids
9.1. Flowing Formulae
9.1.1. Absolute Pressure
9.1.1.1. P=Po + ρgh
9.1.2. Torricelli's Thereom
9.1.2.1. v=(2gh)^0.5
9.1.3. Bernoulli's Equation
9.1.3.1. P+1/2ρv^2+ρgh=Constant
9.1.4. Volume Flow Rate
9.1.4.1. R=vA
9.1.5. Fluid Velocity
9.1.5.1. A1v1=A2v2
9.2. Static Formulae
9.2.1. Density
9.2.1.1. ρ=m/V
9.2.2. Pressure
9.2.2.1. P=F/A
9.2.3. Fluid Pressure
9.2.3.1. P=ρgh
9.2.4. Buoyant Force
9.2.4.1. F=ρgV
9.2.5. Specifc Gravity
9.2.5.1. SG=ρobj/ρwater
10. Waves/Vibrations
10.1. Period of Spring
10.1.1. TS=2π(m/k)½
10.2. Period of Pendulum
10.2.1. TP=2π(L/g)^½
10.3. Wave Speed
10.4. Energy of SHM Object
10.4.1. E= ½mv^2 + ½kx^2
10.5. Transverse Wave Velocity
10.5.1. v=[FT/(m/L)]^½
11. Sound
11.1. Speed of Sound
11.1.1. v=331 + 0.6T
11.2. Intensity
11.2.1. β=10 log I/IO
11.3. Harmonic Frequency
11.3.1. Open/Open and Closed/ Closed
11.3.1.1. FN=nv/2L
11.3.2. Open/Closed
11.3.2.1. FN=v(2n-1)/4L
11.4. Beat Frequency
11.4.1. FB=F1-F2
11.5. Doppler Effect
11.5.1. f=fo[(v+vo)/(v+vs)]
11.6. Sound Inteference
11.6.1. Constructive
11.6.2. Destructive
12. Electrostatics
12.1. Coulomb's Law
12.1.1. Fq= kQ1Q2/r^2
12.2. Electric Field
12.2.1. E=F/q
12.3. Field from Point Charge
12.3.1. E= kQ/r^2
12.4. Electric Potential Energy
12.4.1. UE= qV
12.5. Electric Potential from Point
12.5.1. V=kQ/r
12.6. Potential Difference
12.6.1. ∆Vab= Wab/q
12.6.2. Vab= Ed cos θ
12.7. Voltage
12.7.1. V=Ex
12.7.1.1. ∑V=kQ/r
12.8. Work by Electric Force/Field
12.8.1. WE= kQQ/r
12.8.2. W= q∆V
12.9. Electric Potential Energy
12.9.1. ∆UE= qEx
13. Circuits
13.1. Current
13.1.1. I= Q/t
13.2. Resistance
13.2.1. R= ρL/A
13.3. Ohm's Law
13.3.1. V= IR
13.4. Power
13.4.1. P=IV=I^2R=V^2/R
13.5. Capacitance
13.5.1. Q=CV
13.5.2. Stored Energy
13.5.2.1. UC= ½QV= ½CV²= ½Q²/V
13.6. Resistors in Series
13.7. Resistors in Parallel
13.8. Capacitors in Series
13.9. Capacitors in Parallel
13.10. Kirchoff's Rules
13.10.1. Junction Rule
13.10.1.1. ∑I=0
13.10.2. Loop Rule
13.10.2.1. ∑V=0
14. Optics
14.1. Formulae
14.1.1. Speed of light
14.1.1.1. c = fλ
14.1.2. Index of refraction
14.1.2.1. n = c/v
14.1.3. Snell's Law
14.1.3.1. n1sinθ1 = n2sinθ2
14.1.4. Critical angle
14.1.4.1. sinθc = n2/n1
14.1.5. Thin lens equation
14.1.5.1. 1/f = (1/di)+(1/do)
14.1.6. Magnification
14.1.6.1. M = hi/ho = -di/do
14.1.7. Focal length and radius of curvature
14.1.7.1. f = R/2
14.1.8. Diffraction
14.1.8.1. mλ = dsinθ
14.1.9. Diffraction small angle approx.
14.1.9.1. xm = mλL/d
14.2. Concepts
14.2.1. Law of Reflection
14.2.1.1. θi = θr
14.2.2. Law of Refraction
14.2.2.1. n1sinθ1 = n2sinθ2
14.2.3. Ray diagrams
14.2.4. Mirrors
14.2.4.1. Plane
14.2.4.2. Concave
14.2.4.2.1. do<f
14.2.4.2.2. do=f
14.2.4.2.3. 2f>do>f
14.2.4.2.4. do = 2f
14.2.4.2.5. do>2f
14.2.4.3. Convex
14.2.5. Lenses
14.2.5.1. Converging
14.2.5.1.1. do < f
14.2.5.1.2. do=f
14.2.5.1.3. 2f>do>f
14.2.5.1.4. do = 2f
14.2.5.1.5. do>2f
14.2.5.2. Diverging
14.2.6. Thin film interference
14.3. Units
14.3.1. f = focal point
14.3.2. Center of Curvature = 2f
15. Magnetism
15.1. Magnetic Flux
15.2. Magnetic Field
15.2.1. B= μoI/2πr
15.3. Force on Wire
15.3.1. F= LIB sin θ
15.4. Force on Particle
15.4.1. Fq= qvB sin θ
15.5. Ion Path
15.5.1. r=mv/qB
15.6. Force Between Wires
15.6.1. F/L= μoI1I2/2πd
15.7. Right Hand Rules
15.7.1. Wire Rule
15.7.2. Field Rule
15.8. Field in a Coil
15.9. Induced EMF
15.9.1. V=vLB sin θ