Get Started. It's Free
or sign up with your email address
AP Physics by Mind Map: AP Physics

1. 2-D Kinematics

1.1. Formulae

1.1.1. y-direction

1.1.1.1. y = yo + vot +½at²

1.1.2. x-direction

1.1.2.1. x = xo + vot

1.1.2.2. NO ACCELERATION

1.2. Units

1.2.1. Acceleration = g = 9.8m/s²

1.3. Definitions

1.3.1. 2-D Motion

1.3.1.1. motion in two direction

1.3.2. Projectile Motion

1.3.2.1. motion with constant velocity in one direction and constant acceleration in another

1.3.2.2. Parabolic path

1.4. Graphs

1.4.1. Position(x) vs. Time(t)

1.4.1.1. Parabolic path

1.4.1.1.1. Midpoint = 0m/s

1.4.2. Velocity(v) vs. Time(t)

1.4.2.1. Constant(downward) slope

1.4.3. Acceleration(a) vs. Time(t)

1.4.3.1. Linear

2. 1-D Kinematics

2.1. Formulae

2.1.1. v = vₒ +a∆t

2.1.2. x = xₒ + vt +½at²

2.1.3. v² = vₒ² +2a∆x

2.2. Definitions

2.2.1. Kinematics

2.2.1.1. the motion of an object

2.2.2. Vector

2.2.2.1. Magnitude + direction

2.2.3. Scalar

2.2.3.1. Magnitude

2.3. Graphs

2.3.1. Position(x) vs. Time(t)

2.3.1.1. Slope(m)=velocity(v)

2.3.2. Velocity(v) vs. Time(t)

2.3.2.1. Slope(m)=acceleration(a)

2.3.3. Acceleration(a) vs. Time(t)

2.4. Units

2.4.1. Distance = d

2.4.2. Displacement = ∆x

2.4.3. Velocity = v

2.4.4. Acceleration = a

2.4.5. Time = t

3. Newton's Laws of Motion

3.1. The Laws

3.1.1. Newton's 1st Law

3.1.1.1. ∑F= 0

3.1.2. Newton's 2nd Law

3.1.2.1. ∑F=ma

3.1.3. Newton's 3rd Law

3.1.3.1. Equal but Opposite

3.2. Concepts

3.2.1. Weight

3.2.1.1. w = mg

3.2.2. Free Body Diagram

3.2.2.1. Normal Force

3.2.2.1.1. Perpendicular to surface object is on

3.2.2.2. Weight

3.2.2.2.1. Always STRAIGHT down.

3.2.2.3. Tension

3.2.2.3.1. Vertical Tension

3.2.2.3.2. Horizontal Tension

3.3. Friction

3.3.1. F = μN

3.3.2. μ = coefficient of friction

3.3.2.1. static

3.3.2.1.1. Applies when the object is not in motion

3.3.2.2. kinetic

3.3.2.2.1. Applies when the object is in motion

3.4. Justinian Acceleration Conjecture

3.4.1. ±a=[|W1(sin θ1 – μk cos θ1)±W2(sin θ2 – μk cos θ2)|]/(m1+m2)

4. Energy

4.1. Work and Kinetic Energy

4.1.1. Formulae

4.1.1.1. Kinetic Energy

4.1.1.1.1. K = ½mv²

4.1.1.2. Work

4.1.1.2.1. W = F∆dcosθ

4.1.1.3. Power

4.1.1.3.1. P = W/t = ∆E/t

4.1.1.4. Power

4.1.1.4.1. P = Fvcosθ

4.1.1.5. Spring Force

4.1.1.5.1. F = -k∆x

4.1.2. Units

4.1.2.1. Energy = E

4.1.2.1.1. Kinetic = K

4.1.2.1.2. Potential = U

4.1.2.2. Work = W

4.1.2.3. Spring Constant = k

4.1.3. Concepts

4.1.3.1. Pendulums

4.1.3.1.1. Independent from mass

4.1.3.2. Springs

4.2. Potential Energy and Conservation of Energy

4.2.1. Formulae

4.2.1.1. Gravitational Potential Energy

4.2.1.1.1. U = mgh

4.2.1.2. Potential Energy of a Spring

4.2.1.2.1. U = ½kx²

4.2.1.3. Gravitational Potential Energy

4.2.1.3.1. U = -GMm/r

4.2.2. Units

4.2.2.1. Gravitational Constant = G

4.2.2.2. U = Potential Energy

4.2.3. Law of Conservation of Energy

5. Linear Momentum and Collisions

5.1. Formulae

5.1.1. p = mv

5.1.2. J = m∆v = F∆t

5.1.3. F = m∆v/∆t

5.2. Units

5.2.1. Momentum = p

6. Circular Motion and Gravitation

6.1. Centripetal Acceleration

6.1.1. AC=V2/R

6.2. Tangential Velocity

6.2.1. V=2πr/T

6.3. Period

6.3.1. T=1/f

6.4. Frequency

6.4.1. f=1/T

6.5. Centripetal Force

6.5.1. FC=mv2/r

6.6. Gravitational Force

6.6.1. FG=Gmm/r2

6.7. Orbital Speed

6.7.1. V=(Gm/r)^0.5

7. Fluids

7.1. Flowing Formulae

7.1.1. Absolute Pressure

7.1.1.1. P=Po + ρgh

7.1.2. Torricelli's Thereom

7.1.2.1. v=(2gh)^0.5

7.1.3. Bernoulli's Equation

7.1.3.1. P+1/2ρv^2+ρgh=Constant

7.1.4. Volume Flow Rate

7.1.4.1. R=vA

7.1.5. Fluid Velocity

7.1.5.1. A1v1=A2v2

7.2. Static Formulae

7.2.1. Density

7.2.1.1. ρ=m/V

7.2.2. Pressure

7.2.2.1. P=F/A

7.2.3. Fluid Pressure

7.2.3.1. P=ρgh

7.2.4. Buoyant Force

7.2.4.1. F=ρgV

7.2.5. Specifc Gravity

7.2.5.1. SG=ρobj/ρwater

8. Waves/Vibrations

8.1. Period of Spring

8.1.1. TS=2π(m/k)½

8.2. Period of Pendulum

8.2.1. TP=2π(L/g)^½

8.3. Wave Speed

8.4. Energy of SHM Object

8.4.1. E= ½mv^2 + ½kx^2

8.5. Transverse Wave Velocity

8.5.1. v=[FT/(m/L)]^½

9. Sound

9.1. Speed of Sound

9.1.1. v=331 + 0.6T

9.2. Intensity

9.2.1. β=10 log I/IO

9.3. Harmonic Frequency

9.3.1. Open/Open and Closed/ Closed

9.3.1.1. FN=nv/2L

9.3.2. Open/Closed

9.3.2.1. FN=v(2n-1)/4L

9.4. Beat Frequency

9.4.1. FB=F1-F2

9.5. Doppler Effect

9.5.1. f=fo[(v+vo)/(v+vs)]

9.6. Sound Inteference

9.6.1. Constructive

9.6.2. Destructive

10. Thermodynamics

10.1. Linear Expansion

10.2. Volumetric Expansion

10.3. Ideal Gas Law

10.3.1. PV=nRT

10.4. Combined Gas Law

10.4.1. P1V1/T1=P2V2/T2

10.5. Internal Energy

10.5.1. U=3nRT/2

10.6. Heat Transfer

10.7. Thermal Conduction

10.8. First Law

10.9. Efficiency

10.9.1. e= W/QH

10.9.2. e= QH-QC/QH

10.9.3. e= 1-(TC/TH)

11. Electrostatics

11.1. Coulomb's Law

11.1.1. Fq= kQ1Q2/r^2

11.2. Electric Field

11.2.1. E=F/q

11.3. Field from Point Charge

11.3.1. E= kQ/r^2

11.4. Electric Potential Energy

11.4.1. UE= qV

11.5. Electric Potential from Point

11.5.1. V=kQ/r

11.6. Potential Difference

11.6.1. ∆Vab= Wab/q

11.6.2. Vab= Ed cos θ

11.7. Voltage

11.7.1. V=Ex

11.7.1.1. ∑V=kQ/r

11.8. Work by Electric Force/Field

11.8.1. WE= kQQ/r

11.8.2. W= q∆V

11.9. Electric Potential Energy

11.9.1. ∆UE= qEx

12. Circuits

12.1. Current

12.1.1. I= Q/t

12.2. Resistance

12.2.1. R= ρL/A

12.3. Ohm's Law

12.3.1. V= IR

12.4. Power

12.4.1. P=IV=I^2R=V^2/R

12.5. Capacitance

12.5.1. Q=CV

12.5.2. Stored Energy

12.5.2.1. UC= ½QV= ½CV²= ½Q²/V

12.6. Resistors in Series

12.7. Resistors in Parallel

12.8. Capacitors in Series

12.9. Capacitors in Parallel

12.10. Kirchoff's Rules

12.10.1. Junction Rule

12.10.1.1. ∑I=0

12.10.2. Loop Rule

12.10.2.1. ∑V=0

13. Optics

13.1. Formulae

13.1.1. Speed of light

13.1.1.1. c = fλ

13.1.2. Index of refraction

13.1.2.1. n = c/v

13.1.3. Snell's Law

13.1.3.1. n1sinθ1 = n2sinθ2

13.1.4. Critical angle

13.1.4.1. sinθc = n2/n1

13.1.5. Thin lens equation

13.1.5.1. 1/f = (1/di)+(1/do)

13.1.6. Magnification

13.1.6.1. M = hi/ho = -di/do

13.1.7. Focal length and radius of curvature

13.1.7.1. f = R/2

13.1.8. Diffraction

13.1.8.1. mλ = dsinθ

13.1.9. Diffraction small angle approx.

13.1.9.1. xm = mλL/d

13.2. Concepts

13.2.1. Law of Reflection

13.2.1.1. θi = θr

13.2.2. Law of Refraction

13.2.2.1. n1sinθ1 = n2sinθ2

13.2.3. Ray diagrams

13.2.4. Mirrors

13.2.4.1. Plane

13.2.4.2. Concave

13.2.4.2.1. do<f

13.2.4.2.2. do=f

13.2.4.2.3. 2f>do>f

13.2.4.2.4. do = 2f

13.2.4.2.5. do>2f

13.2.4.3. Convex

13.2.5. Lenses

13.2.5.1. Converging

13.2.5.1.1. do < f

13.2.5.1.2. do=f

13.2.5.1.3. 2f>do>f

13.2.5.1.4. do = 2f

13.2.5.1.5. do>2f

13.2.5.2. Diverging

13.2.6. Thin film interference

13.3. Units

13.3.1. f = focal point

13.3.2. Center of Curvature = 2f

14. Magnetism

14.1. Magnetic Flux

14.2. Magnetic Field

14.2.1. B= μoI/2πr

14.3. Force on Wire

14.3.1. F= LIB sin θ

14.4. Force on Particle

14.4.1. Fq= qvB sin θ

14.5. Ion Path

14.5.1. r=mv/qB

14.6. Force Between Wires

14.6.1. F/L= μoI1I2/2πd

14.7. Right Hand Rules

14.7.1. Wire Rule

14.7.2. Field Rule

14.8. Field in a Coil

14.9. Induced EMF

14.9.1. V=vLB sin θ

14.10. Lenz's Law

15. Modern Physics

15.1. Quantum

15.1.1. Formulae

15.1.1.1. Energy of a photon

15.1.1.1.1. E = hf

15.1.1.2. Photoelectric effect

15.1.1.2.1. Km = hf - φ

15.1.1.3. Momentum of a photon

15.1.1.3.1. p = h/λ

15.1.1.4. de Broglie wavelength

15.1.1.4.1. λ = h/p

15.1.1.5. Mass-energy equivalence

15.1.1.5.1. ∆E = (∆m)c²

15.1.1.6. Momentum

15.1.1.6.1. p= (2mk)^1/2

15.1.2. Units

15.1.2.1. φ = work function

15.1.2.2. h = Planck's constant

15.1.2.3. fₒ = threshold frequency

15.1.3. Concepts

15.1.3.1. Photoelectric effect

15.1.3.2. Compton effect

15.2. Nuclear