# AP Physics

Get Started. It's Free
AP Physics

## 1. 2-D Kinematics

### 1.1. Formulae

1.1.1. y-direction

1.1.1.1. y = yo + vot +½at²

1.1.2. x-direction

1.1.2.1. x = xo + vot

1.1.2.2. NO ACCELERATION

### 1.2. Units

1.2.1. Acceleration = g = 9.8m/s²

### 1.3. Definitions

1.3.1. 2-D Motion

1.3.1.1. motion in two direction

1.3.2. Projectile Motion

1.3.2.1. motion with constant velocity in one direction and constant acceleration in another

1.3.2.2. Parabolic path

### 1.4. Graphs

1.4.1. Position(x) vs. Time(t)

1.4.1.1. Parabolic path

1.4.1.1.1. Midpoint = 0m/s

1.4.2. Velocity(v) vs. Time(t)

1.4.2.1. Constant(downward) slope

1.4.3. Acceleration(a) vs. Time(t)

1.4.3.1. Linear

## 2. Newton's Laws of Motion

### 2.1. The Laws

2.1.1. Newton's 1st Law

2.1.1.1. ∑F= 0

2.1.2. Newton's 2nd Law

2.1.2.1. ∑F=ma

2.1.3. Newton's 3rd Law

2.1.3.1. Equal but Opposite

### 2.2. Concepts

2.2.1. Weight

2.2.1.1. w = mg

2.2.2. Free Body Diagram

2.2.2.1. Normal Force

2.2.2.1.1. Perpendicular to surface object is on

2.2.2.2. Weight

2.2.2.2.1. Always STRAIGHT down.

2.2.2.3. Tension

2.2.2.3.1. Vertical Tension

2.2.2.3.2. Horizontal Tension

### 2.3. Friction

2.3.1. F = μN

2.3.2. μ = coefficient of friction

2.3.2.1. static

2.3.2.1.1. Applies when the object is not in motion

2.3.2.2. kinetic

2.3.2.2.1. Applies when the object is in motion

### 2.4. Justinian Acceleration Conjecture

2.4.1. ±a=[|W1(sin θ1 – μk cos θ1)±W2(sin θ2 – μk cos θ2)|]/(m1+m2)

## 3. Energy

### 3.1. Work and Kinetic Energy

3.1.1. Formulae

3.1.1.1. Kinetic Energy

3.1.1.1.1. K = ½mv²

3.1.1.2. Work

3.1.1.2.1. W = F∆dcosθ

3.1.1.3. Power

3.1.1.3.1. P = W/t = ∆E/t

3.1.1.4. Power

3.1.1.4.1. P = Fvcosθ

3.1.1.5. Spring Force

3.1.1.5.1. F = -k∆x

3.1.2. Units

3.1.2.1. Energy = E

3.1.2.1.1. Kinetic = K

3.1.2.1.2. Potential = U

3.1.2.2. Work = W

3.1.2.3. Spring Constant = k

3.1.3. Concepts

3.1.3.1. Pendulums

3.1.3.1.1. Independent from mass

3.1.3.2. Springs

### 3.2. Potential Energy and Conservation of Energy

3.2.1. Formulae

3.2.1.1. Gravitational Potential Energy

3.2.1.1.1. U = mgh

3.2.1.2. Potential Energy of a Spring

3.2.1.2.1. U = ½kx²

3.2.1.3. Gravitational Potential Energy

3.2.1.3.1. U = -GMm/r

3.2.2. Units

3.2.2.1. Gravitational Constant = G

3.2.2.2. U = Potential Energy

3.2.3. Law of Conservation of Energy

## 4. Linear Momentum and Collisions

### 4.1. Formulae

4.1.1. p = mv

4.1.2. J = m∆v = F∆t

4.1.3. F = m∆v/∆t

### 4.2. Units

4.2.1. Momentum = p

## 5. Circular Motion and Gravitation

5.1.1. AC=V2/R

5.2.1. V=2πr/T

5.3.1. T=1/f

5.4.1. f=1/T

5.5.1. FC=mv2/r

5.6.1. FG=Gmm/r2

### 5.7. Orbital Speed

5.7.1. V=(Gm/r)^0.5

## 6. Thermodynamics

6.3.1. PV=nRT

### 6.4. Combined Gas Law

6.4.1. P1V1/T1=P2V2/T2

6.5.1. U=3nRT/2

### 6.9. Efficiency

6.9.1. e= W/QH

6.9.2. e= QH-QC/QH

6.9.3. e= 1-(TC/TH)

## 7. Modern Physics

### 7.1. Quantum

7.1.1. Formulae

7.1.1.1. Energy of a photon

7.1.1.1.1. E = hf

7.1.1.2. Photoelectric effect

7.1.1.2.1. Km = hf - φ

7.1.1.3. Momentum of a photon

7.1.1.3.1. p = h/λ

7.1.1.4. de Broglie wavelength

7.1.1.4.1. λ = h/p

7.1.1.5. Mass-energy equivalence

7.1.1.5.1. ∆E = (∆m)c²

7.1.1.6. Momentum

7.1.1.6.1. p= (2mk)^1/2

7.1.2. Units

7.1.2.1. φ = work function

7.1.2.2. h = Planck's constant

7.1.2.3. fₒ = threshold frequency

7.1.3. Concepts

7.1.3.1. Photoelectric effect

7.1.3.2. Compton effect

## 8. 1-D Kinematics

### 8.1. Formulae

8.1.1. v = vₒ +a∆t

8.1.2. x = xₒ + vt +½at²

8.1.3. v² = vₒ² +2a∆x

### 8.2. Definitions

8.2.1. Kinematics

8.2.1.1. the motion of an object

8.2.2. Vector

8.2.2.1. Magnitude + direction

8.2.3. Scalar

8.2.3.1. Magnitude

### 8.3. Graphs

8.3.1. Position(x) vs. Time(t)

8.3.1.1. Slope(m)=velocity(v)

8.3.2. Velocity(v) vs. Time(t)

8.3.2.1. Slope(m)=acceleration(a)

8.3.3. Acceleration(a) vs. Time(t)

### 8.4. Units

8.4.1. Distance = d

8.4.2. Displacement = ∆x

8.4.3. Velocity = v

8.4.4. Acceleration = a

8.4.5. Time = t

## 9. Fluids

### 9.1. Flowing Formulae

9.1.1. Absolute Pressure

9.1.1.1. P=Po + ρgh

9.1.2. Torricelli's Thereom

9.1.2.1. v=(2gh)^0.5

9.1.3. Bernoulli's Equation

9.1.3.1. P+1/2ρv^2+ρgh=Constant

9.1.4. Volume Flow Rate

9.1.4.1. R=vA

9.1.5. Fluid Velocity

9.1.5.1. A1v1=A2v2

### 9.2. Static Formulae

9.2.1. Density

9.2.1.1. ρ=m/V

9.2.2. Pressure

9.2.2.1. P=F/A

9.2.3. Fluid Pressure

9.2.3.1. P=ρgh

9.2.4. Buoyant Force

9.2.4.1. F=ρgV

9.2.5. Specifc Gravity

9.2.5.1. SG=ρobj/ρwater

## 10. Waves/Vibrations

### 10.1. Period of Spring

10.1.1. TS=2π(m/k)½

### 10.2. Period of Pendulum

10.2.1. TP=2π(L/g)^½

### 10.4. Energy of SHM Object

10.4.1. E= ½mv^2 + ½kx^2

### 10.5. Transverse Wave Velocity

10.5.1. v=[FT/(m/L)]^½

## 11. Sound

### 11.1. Speed of Sound

11.1.1. v=331 + 0.6T

### 11.2. Intensity

11.2.1. β=10 log I/IO

### 11.3. Harmonic Frequency

11.3.1. Open/Open and Closed/ Closed

11.3.1.1. FN=nv/2L

11.3.2. Open/Closed

11.3.2.1. FN=v(2n-1)/4L

11.4.1. FB=F1-F2

### 11.5. Doppler Effect

11.5.1. f=fo[(v+vo)/(v+vs)]

### 11.6. Sound Inteference

11.6.1. Constructive

11.6.2. Destructive

## 12. Electrostatics

### 12.1. Coulomb's Law

12.1.1. Fq= kQ1Q2/r^2

12.2.1. E=F/q

### 12.3. Field from Point Charge

12.3.1. E= kQ/r^2

12.4.1. UE= qV

12.5.1. V=kQ/r

### 12.6. Potential Difference

12.6.1. ∆Vab= Wab/q

12.6.2. Vab= Ed cos θ

### 12.7. Voltage

12.7.1. V=Ex

12.7.1.1. ∑V=kQ/r

### 12.8. Work by Electric Force/Field

12.8.1. WE= kQQ/r

12.8.2. W= q∆V

12.9.1. ∆UE= qEx

## 13. Circuits

13.1.1. I= Q/t

13.2.1. R= ρL/A

13.3.1. V= IR

### 13.4. Power

13.4.1. P=IV=I^2R=V^2/R

### 13.5. Capacitance

13.5.1. Q=CV

13.5.2. Stored Energy

13.5.2.1. UC= ½QV= ½CV²= ½Q²/V

### 13.10. Kirchoff's Rules

13.10.1. Junction Rule

13.10.1.1. ∑I=0

13.10.2. Loop Rule

13.10.2.1. ∑V=0

## 14. Optics

### 14.1. Formulae

14.1.1. Speed of light

14.1.1.1. c = fλ

14.1.2. Index of refraction

14.1.2.1. n = c/v

14.1.3. Snell's Law

14.1.3.1. n1sinθ1 = n2sinθ2

14.1.4. Critical angle

14.1.4.1. sinθc = n2/n1

14.1.5. Thin lens equation

14.1.5.1. 1/f = (1/di)+(1/do)

14.1.6. Magnification

14.1.6.1. M = hi/ho = -di/do

14.1.7. Focal length and radius of curvature

14.1.7.1. f = R/2

14.1.8. Diffraction

14.1.8.1. mλ = dsinθ

14.1.9. Diffraction small angle approx.

14.1.9.1. xm = mλL/d

### 14.2. Concepts

14.2.1. Law of Reflection

14.2.1.1. θi = θr

14.2.2. Law of Refraction

14.2.2.1. n1sinθ1 = n2sinθ2

14.2.3. Ray diagrams

14.2.4. Mirrors

14.2.4.1. Plane

14.2.4.2. Concave

14.2.4.2.1. do<f

14.2.4.2.2. do=f

14.2.4.2.3. 2f>do>f

14.2.4.2.4. do = 2f

14.2.4.2.5. do>2f

14.2.4.3. Convex

14.2.5. Lenses

14.2.5.1. Converging

14.2.5.1.1. do < f

14.2.5.1.2. do=f

14.2.5.1.3. 2f>do>f

14.2.5.1.4. do = 2f

14.2.5.1.5. do>2f

14.2.5.2. Diverging

14.2.6. Thin film interference

### 14.3. Units

14.3.1. f = focal point

14.3.2. Center of Curvature = 2f

## 15. Magnetism

### 15.2. Magnetic Field

15.2.1. B= μoI/2πr

### 15.3. Force on Wire

15.3.1. F= LIB sin θ

### 15.4. Force on Particle

15.4.1. Fq= qvB sin θ

15.5.1. r=mv/qB

### 15.6. Force Between Wires

15.6.1. F/L= μoI1I2/2πd

### 15.7. Right Hand Rules

15.7.1. Wire Rule

15.7.2. Field Rule

### 15.9. Induced EMF

15.9.1. V=vLB sin θ